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Abstract

The general theory of harmonic oscillators with time-dependent frequency
and ‘effective mass’ is related in the present work to the use of the adiabatic
approximation. A slow ‘pumping’ of energy into the mechanical oscillator
leads to a slow increase of the amplitude and frequency with squeezing effects
by which the noise in one quadrature is increasing and in the other quadrature is
decreasing. An order of magnitude for the squeezing effect is calculated. It is
suggested to use this theory for mechanical oscillators in traps and for resonant
detectors. The other extreme case of ‘impulse’ interaction in which the time of
interaction is very small relative to the time period of the harmonic oscillator is
analyzed. In the ‘impact’ approximation the time development is without any
squeezing, but broadening effects might be important under special conditions.
The ‘impact’ approximation might be related to the detection of gravitational
waves by Michelson interferometers.

PACS numbers: 04.80.Nn, 03.65.Bz, 42.50.Dv

1. Introduction

The problem of a harmonic oscillator with time-dependent mass has been related to a quantum-
damped oscillator [1–7]. In these studies the mass parameter is given as a general function of
time, and the equations of motion include a damping mechanism with a driving force [7] or
without it [6]. As these systems are non-conservative, quantum theories of non-conservative
systems have been developed.

The study of problems involving harmonic oscillators with time-dependent masses [8, 9],
or with time-dependent frequencies [10–19], or both simultaneously [20–28] has attracted
much interest with the various publications. Of course such systems are not closed in the
sense that some external influence, which not need be specified, may change the harmonic
oscillator parameters, i.e., alter its frequency, amplitude, etc. By using the generalized
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quantum-mechanical invariant, first introduced by Lewis [13, 14] and Lewis and Reisenfeld
[11], the exact quantum states for such oscillators can be found for various special cases. It
is shown that squeezing phenomena (i.e., quantum fluctuations in one quadrature which are
smaller relative to those of the other quadrature) will inevitably be generated in a harmonic
oscillator with time-dependent frequency and mass. Squeezing phenomena have been found
in the analysis of harmonic oscillators with variable mass [8, 9] or variable frequency [10–19],
or with both [20–28]. Variable frequencies in electromagnetic oscillators are well known in
the field of optics [29] and have been referred as ‘chirping’. In the present paper we are
interested, however, in squeezing effects in mechanical oscillators. Squeezing phenomena of
mechanical oscillators have been analyzed and observed in the quantum dynamics of single
trapped ions [30].

In the present work we would like to study, especially, squeezing phenomena which
can occur in mechanical oscillators which are produced by slow pumping of energy in the
mechanical oscillator and which can be analyzed by the use of the adiabatic approximation.
While quantum harmonic oscillators with time-dependent mass (‘effective mass’) have been
extensively studied [1–28] the use of the quantization by the adiabatic approximation has not
been exploited. The use of the adiabatic approximation simplifies the analysis very much and
gives simple quantitative results for the magnitude of the squeezing effects.

The use of the adiabatic approximation is compared with the other extreme case in which
the ‘impulse’ driving force leads to a shift of the wave packet in the momentum k distribution
without any squeezing (but broadening effects in the x representation might be important,
under special conditions). The use of such approximation for gravitational waves detection in
Michelson interferometers is discussed.

The present paper is arranged as follows: in section 2 we present a general theory
of a harmonic oscillator with time-dependent frequency and effective mass. In section 3,
we analyze the squeezing effects produced in mechanical oscillators due to time-dependent
frequency (‘chirping’) and/or time-dependent effective mass (i.e., slow change in the harmonic
oscillator amplitude due to damping or energy pumping). In section 4, we analyze the
squeezing effects obtained by slow pumping of energy into the harmonic oscillator using
the adiabatic approximation. The adiabatic approximation represents a slow variation of
the harmonic oscillator parameters so that the harmonic oscillator remains as an eigenstate
of the Hamiltonian (1). In section 5, we describe the other extreme case where the external
perturbation can be considered as an ‘impulse’ function and the time of the external perturbation
is small relative to the time period of the harmonic oscillator. The use of the ‘impulse’
approximation for gravitational waves detection in Michelson interferometers is discussed. In
section 6, the present results are summarized and possible implications of the present theories
to mechanical oscillators and resonant detectors are discussed.

2. The evolution operator of a harmonic oscillator with time-dependent frequency and

effective mass

We consider the following Hamiltonian of a harmonic oscillator:

Ĥ (t) = p̂2

2Meff(t)
+

1

2
Meff(t)ω(t)2q̂2, (1)

where Meff(t) and ω(t) are the effective mass and frequency, respectively, and they are time
dependent. This Hamiltonian has been investigated in many articles [6–28] and we use here
the analysis given in [20–22]. We rewrite the Hamiltonian (1) as

Ĥ (t) = a1(t)Ĵ + + a2(t)Ĵ 0 + a3(t)Ĵ−, (2)

2
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where

Ĵ + = i

2h̄
q̂2, Ĵ− = i

2h̄
p̂2, Ĵ 0 = i

4h̄
(p̂q̂ + q̂p̂) (3)

and

a1(t) = −ih̄Meff(t)ω(t)2, a2(t) = 0, a3(t) = −ih̄

Meff(t)
. (4)

Here Ĵ +, Ĵ 0 and Ĵ− form the SU(1,1) Lie algebra satisfying the commutation relations
(CR):

[Ĵ +, Ĵ−] = −2Ĵ 0, [Ĵ 0, Ĵ±] = ±Ĵ±. (5)

The Schrödinger equation corresponding to this Hamiltonian is

Ĥ (t)|φ(t)〉 = ih̄
∂

∂t
|φ(t)〉. (6)

The evolution operator Û (t, 0) is given by

|φ(t)〉 = Û (t, 0)|φ(0)〉, (7)

where |φ(0)〉 is the wavefunction at time t = 0. Insertion of (7) into (6) gives the evolution
equation

Ĥ (t)Û (t, 0) = ih̄
∂

∂t
Û (t, 0), Û (0, 0) = 1. (8)

Since Ĵ +, Ĵ 0 and Ĵ− form a closed SU(1, 1) Lie algebra, the evolution operator can be
expressed in the following form:

Û (t, 0) = exp(c1(t)Ĵ +) exp(c2(t)Ĵ 0) exp(c3(t)Ĵ−), (9)

where differential equations for ci(t) (i = 1, 2, 3) are obtained by direct differentiation of this
operator with respect to time and by substituting the result into (8). By certain reordering of
the operators on the right-hand side of (8) and comparing them with the left-hand side of this
equation one gets three differential equations for c1(t), c2(t), c3(t), where their solutions can
be presented as [20]:

c1(t) = Meff(t)
1

u(t)

∂

∂t
u(t), c2(t) = −2 ln

∣∣∣∣ u(t)

u(0)

∣∣∣∣ ,
c3(t) = −u2(0)

∫ t

0

du

Meff(t ′)u2(t ′)
.

(10)

Here u(t) satisfies the following auxiliary differential equation:

ü + γ 0(t)u̇ + ω(t)2u = 0 (11)

and

γ0(t) = ∂

∂t
[ln(Meff(t)] = 1

Meff(t)

∂

∂t
Meff(t). (12)

The auxiliary equation (11) for the present analysis is quite complicated and does not
have a general solution. We refer to the literature [11–14] for the solution of this equation for
special cases. For our purpose we shall simplify, however, our analysis in section 4 by the use
of the adiabatic approximation.

Using cgs units we should note that in equations (10), c1(t) has the dimension g/s, c3(t)

has the dimension s/g, while c2(t) is dimensionless. Vice versa, in the definitions (3) Ĵ + has
the dimension s/g, Ĵ− has the dimension g/s while Ĵ 0 is dimensionless.
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3. Coherence and squeezing properties of the wavefunction of a harmonic oscillator

with time-dependent frequency and effective mass

The following analysis for describing the coherence and squeezing properties of a harmonic
oscillator with time-dependent frequency and effective mass is based on the use of the SU(1, 1)

algebra [20]. Similar results are obtained by the use of the SU(2) algebra [8]. The fact that the
time dependence of the Hamiltonian (1) by the use of the SU(1,1) algebra [20, 21] gives the
same results as those obtained by the use of the SU(2) algebra seems to be quite surprising.
However, one should note that the decomposition of Ĥ (t)has been made in [2–4] only into
the operators Ĵ + and Ĵ−, while Ĵ 0 does not appear in this decomposition (as a2(t) = 0). One
can therefore replace the operators Ĵ + and Ĵ− by the operators [8]:

Ĵ + = 1

2h̄
q̂2, Ĵ− = 1

2h̄
p̂2, Ĵ 0 = i

4h̄
(p̂q̂ + q̂p̂), (3a)

which satisfy the SU(2) algebra, as was done in [8], and the same Hamiltonian Ĥ (t) is obtained
by assuming [8]

a1(t) = h̄Meff(t)ω(t)2, a2(t) = 0, a3(t) = h̄

Meff(t)
. (4a)

Since both decompositions (those of [8, 20]) describe the same Hermitian Hamiltonian
they give equivalent physical results.

Using the evolution operator (9) in the SU(1,1) representation we study the time
development of a harmonic oscillator with time-dependent frequency and effective mass.
We use the definitions:

q̂ =
√

h̄

2ωM
(â + â†), p̂ = −i

√
h̄ωM

2
(â − â†), (13)

where â and â† are the annihilation and the creation operators, respectively. Suppose we start
with a coherent state at time t = 0:

|φ(0)〉 = |α〉, (14)

where |α〉 is the eigenstate of the annihilation operator and ω = ω0 is the frequency at time
t = 0. M is the ordinary mass which is equivalent to the effective mass at time t = 0, i.e.,

Meff(0) = M. (15)

We can define a new operator Â as

Â = Û (t, 0)âU †(t, 0). (16)

It is easy to see that the wavefunction at time t is a coherent state with respect to the new
operator

Â|φ(t)〉 = α|φ(t)〉. (17)

Using (9) and (16) it can be shown [8, 20, 21] that the original operator â is related to the
new operator Â by Bogoliubov transformation

Â = η1â − η2â
†, (18)

with

|η1|2 − |η2|2 = 1. (19)

η1 and η2 have been calculated by the use of the SU(1,1) algebra [21] obtaining

η1 = 1

2
exp

(
−c2

2

) [
1 − c1c3 + exp(c2) − ic1

Mω0
− iMω0c3

]
, (20)

4
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η2 = 1

2
exp

(
−c2

2

) [
1 + c1c3 − exp(c2) +

ic1

Mω0
− iMω0c3

]
. (21)

It is easy to verify that (19) is satisfied. One should take into account that although the
expressions for c1(t), c2(t), c3(t) in [8] and [20, 22] are different as different algebras were
used, the final results for η1 and η2 are the same in both references. In the present analysis we
find it more convenient to follow the SU(1,1) representation [20–22].

The critical point in estimating the magnitude of the squeezing phenomena is the explicit
calculation of the parameters c1(t), c2(t) and c3(t). As shown in the previous section this can
be done only by solving the auxiliary differential equation (11) which has no general solution
but can be solved either for specific cases or by assuming the adiabatic approximation where
its use is developed in the following section.

4. Squeezing effects in mechanical oscillators under the adiabatic approximation

Squeezing effects can be produced in a mechanical harmonic oscillator with slowly varying
amplitude and frequency. Such effects can be produced by slow pumping of energy into
the harmonic oscillator. We describe first the effect of increasing the harmonic oscillator
amplitude by classical equations and then describe the quantization of these equations which
are related to the harmonic oscillator with time-dependent effective mass.

The displacement of the mechanical oscillator can be described as

q(t) = f (t)A(0) cos(ω(t)t + φ0), f (0) = 1, ω(0) = ω0, (22)

where f (t)A(0) represents a slowly growing amplitude with time with initial amplitude A(0).
In the adiabatic approximation the change of f (t) and ω(t)during the time period of oscillation
is negligible but its effect is accumulated over many time periods.

The time derivative of q(t), within the adiabatic approximation, can be given as

q̇(t) = −f (t)A(0)ω(t) sin(ω(t)t + φ0), (23)

where we have neglected here the time derivatives of f (t) and ω(t), but have taken into
account their slow change with time. We introduce the definition

Meff(t) = M

f (t)
, (24)

where M is the ordinary mass and Meff(t) is defined as the effective mass. Then the equation
of motion (23) becomes

q̇ = p

Meff
, p = −1

2
MA(0)ω(t) sin(ω(t)t + φ0), (25)

where p is the linear momentum. The equation of motion for p, under the adiabatic
approximation, becomes

ṗ = − 1
2MA(0)ω(t)2 cos(ω(t)t + φ0) = −Meff(t)ω(t)2q. (26)

The quantization of the present one-dimensional harmonic oscillator is given by the
Hamiltonian operator

Ĥ (t) = p̂2

2Meff(t)
+

1

2
Meff(t)ω(t)2q̂2, (27)

which is equivalent to the Hamiltonian (1). One should, however, take into account that
in our analysis the effective mass Meff(t) is smaller than M as it simulates energy pumping
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(increasing amplitude) while in most treatments of the Hamiltonian (1) it simulates energy
damping (decreasing amplitude).

The derivation of the Hamiltonian (27), by using the adiabatic approximation, has a
simple physical explanation: the equations of motion for ṗ and q̇ are similar to those of
ordinary harmonic oscillators but in (27) M and ω have been changed into Meff(t) and ω(t),
respectively, and in (22) A(0) has been changed into f (t)A(0) (f (t) = M/Meff(t)). So, in
the adiabatic approximation the oscillator follows the harmonic oscillator equations with the
slowly varying parameters Meff(t) and ω(t).

Using the quantized Hamiltonian (27) the variables q̂ and p̂ have become operators
satisfying the commutation relations

[q̂, p̂] = ih̄, (28)

and the canonical equations of motion are

˙̂q = 1

ih̄
[q̂, Ĥ ] = p

Meff
, ˙̂p = 1

ih̄
[p̂, Ĥ ] = −Meff(t)ω(t)2q. (29)

The quantized equations of motion (29) correspond to the classical equations of
motion (25) and (26). While q̂ and p̂ are considered as operators, Meff(t) and ω(t) are
taken into account as classical variables.

Since the quantization of the present system is similar to the general analyses of time-
dependent harmonic oscillators [1–28] we expect that there will be quantum squeezed noise
effects in the present system which will be analogous to those analyzed previously [8–28] in
other systems. We will estimate the magnitude of squeezing effects by the use of the adiabatic
approximation.

For calculating the time-dependent parameters c1(t), c2(t) and c3(t) of (10) we need
first to find the solution for the auxiliary equation given by (11) and (12) which as we show
simulates the classical second-order differential equation for q. Using (29) we get

q̈ = ṗ

Meff
− p

1

M2
eff

dMeff

dt
, Meff = M

f (t)
. (30)

Substituting into (30), ṗ from (26), p from (25) and γ0 from (12) then we get

q̈ + γ0q̇ + ω(t)2q = 0 (31)

so that the differential equation for the classical q variable, within the adiabatic approximation,
is equivalent to the differential equation for u.

In performing the first-order time derivative of q, or correspondingly u, we have
neglected the time derivative of f (t). In performing the second-order time derivative of
q, or correspondingly u, we have taken into account the first-order time derivative of f (t)

multiplied by ω(t). This term is considered as a correction term proportional to γ0 and q̇.
This approximation is obtained within the adiabatic approximation and is consistent with the
above quantization procedure.

We use the relations

u(t) = u0f (t) cos(ω(t) + φ0), f (t) = M

Meff
, (32)

where u(t) is the solution of (11) within the adiabatic approximation and where f (0) = 1.
Substituting (32) into (10) and averaging over the oscillating trigonometric function of c2(t)

we get in the SU(1,1) representation

c1(t) = Meff(t)
∂

∂t
{ln[f (t) cos(ω(t)t + φ0)]}, (33)

6



J. Phys. A: Math. Theor. 42 (2009) 055307 Y Ben-Aryeh

c2(t) = − ln[f (t)2] = −2 ln[f (t)], (34)

c3(t) = −i
∫ t

0

1

Meff(t ′)f (t ′)2
du. (35)

By the use of the adiabatic approximation and by final averaging over the trigonometric
functions we find that the contribution of c1(t) and c3(t) to the time evolution of the operator
to Û (t, 0) is negligible and the main contribution follows from c2(t). We find also that within
the adiabatic approximation the effect of change in frequency is quite small and the main effect
of squeezing is due to the increase of amplitude.

To show the magnitude of squeezing, it is convenient to use dimensionless coordinates by
which (13) can be written as

q̂ = â + â†
√

2
, p̂ = −i

â − â†
√

2
. (36)

Then Ĵ 0 is given by

Ĵ 0 = â2 − a†2

4
, (37)

and the unitary operator Û (t, 0) is given according to (9) and (34) by

Û (t, 0) = exp
{− 1

2 ln[f (t)](â2 − a†2)
}
. (38)

Equation (38) represents the well-known squeezing operator [31] with a real squeezing
parameter r = − ln[f (t)]. Following well-known derivations for the unitary squeezing
operator [31] the standard deviations of �x(t) and �p(t) are developed as

�x(t) = 1√
2

exp[ln(f (t)] = 1√
2
f (t), �p(t) = 1√

2
exp[−ln(f (t)] = 1√

2f (t)
. (39)

Similar results to those of (39) have been given also in previous works [8, 21] in which
the relations

�x(t) =
∣∣∣∣exp

(
−c2(t)

2

)∣∣∣∣ , �p(t) =
∣∣∣∣exp

(
c2(t)

2

)∣∣∣∣ (40)

have been derived. However the value of c2(t) was not evaluated in previous works. We find
that the squeezing effect, in the adiabatic approximation, is a very strong effect as the standard
deviation for �x(t) increases proportional to the increase in the harmonic oscillator amplitude
(given in the present analysis by f (t)).

5. Mechanical oscillator under ‘impact’ perturbation

In the ‘impact’ approximation the harmonic oscillator Hamiltonian is exchanged into the
‘impact’ Hamiltonian given as

Ĥ = p̂2

2M
− F(t)x, (41)

where we have neglected here the harmonic potential term 1
2Mω2q̂2 and x is the location

coordinate of the mass M. This approximation might be valid for gravitational waves detection
by Michelson interferometers.

Gravitational waves are propagating fluctuations of gravitational fields, that is, ‘ripples’
in spacetime which travel with the speed of light. Everybody in the path of such a wave
feels a ‘tidal’ gravitational force that acts perpendicular to the waves direction of propagation;

7
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these forces change the distance between points, and the size of the changes is proportional to
the distance between these points thus gravitational waves can be detected by devices which
measure the induced length changes. A promising form of gravitational wave detector uses
laser beams to measure the distance between two well-separated masses. Such devices are
basicly kilometer sized laser interferometers consisting of three masses placed in L-shaped
configuration. The laser beams are reflected back and forth between the mirrors attached to
the masses, where the mirrors lying several kilometers away from each other. A gravitational
wave passing through this interferometer will cause the length of the arms to oscillate with
time. For a polarized gravitational when one arm contracts the other expands and this pattern
alternates. The result is that the interference pattern of the two laser beams changes with time.
It is expected that laser interferometric detectors are those that will provide us with the first
direct detection of gravitational waves on earth.

One way of understanding the effects of gravitational waves operating on interferometers
is to describe them as tidal forces operating on test masses, i.e. the interferometer mirrors.
Typically the gravitational waves frequencies which might be detected by Michelson
interferometers on Earth are about some tens of Hz to some KHz, while the pendulum
period on which the mirrors are located is about 1/2 Hz. Under these conditions the effect of
gravitational waves on the test masses can be taken into account approximately by the use of
the Hamiltonian (41).

In a classical analysis −F(t)x might be considered as the potential energy produced by
the gravitational wave. The force in this approximation is given by − d

dx
(−F(t)x) = F(t)

where the force depends only on time. It is quite well known from the field of quantum optics
that Hamiltonian of the form −F(t)x does not lead to squeezing effects in electromagnetic
waves and such forces are defined as driving forces. One can also verify that the addition of
such terms to the mechanical Hamiltonian (1) does not change the squeezing effects [20–22].
It will be, however, of interest to analyze the perturbation induced by the Hamiltonian (41).
While an electromagnetic wave packet is propagating in free space without any dispersion,
mechanical wave packet is broadened during propagation in free space and we would like to
show the magnitude of this effect.

The wavefunction of a mechanical wave packet can be described as

ψ =
∫

a(k) exp

{
exp

[
i

(
kx − k2

2M
t

)]}
dk. (42)

Here k2/2M is the energy (in units of h̄ = 1) and as it is not proportional to k it leads
to the dispersion of the wave packet. a(k) describes the distribution of the wave packet in k
space and it is fixed by the initial physical conditions. Each component

ψk = exp

[
i

(
kx − k2

2M
t

)]
(43)

satisfies the Schrödinger equation for free particle as

Ĥ 0ψk = p̂2

2M
ψk = k2

2M
ψk, i

dψk

dt
= k2

2M
ψk. (44)

In the ‘impact’ approximation we add the term −F(t)x to H0 so that the total Hamiltonian
H is given by (41). It is convenient to see the change in the momentum k̂ due to the ‘impact’
perturbation in the Heisenberg picture where

i
d

dt
k̂ = [k̂, Ĥ ] = [k̂,−F(t)x] = iF(t). (45)

The momentum k̂ is changed therefore in the ‘impact’ approximation into k̂′given by

k̂′ = k̂ +
∫ t

0
F(t ′) dt ′, (46)

8
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and this change is independent of k̂. By taking expectation values of (46) and dividing by M
we get

〈k′/M〉 = v′ = 〈k/M〉 +

〈∫ t

0
F(t ′) dt ′/M

〉
= v +

〈∫ t

0
F(t ′) dt ′/M

〉
, (47)

where v and v′ are the velocities before the ‘impact’ perturbation, and that obtained by the
impact perturbation, respectively. We find that the effect of −F(t)x is to produce additional
velocities

〈∫ t

0 F(t ′) dt ′
/
M

〉
of the wave packets and correspondingly to a movement of the

wave packet. One can use (45) for calculating the change in the second moment of k̂ and find
that it is not changed by the ‘impact’ perturbation as

d〈k̂2〉
dt

= 2

〈
k̂

dk̂

dt

〉
= 2〈k̂〉F(t) = d〈k̂〉2

dt
. (48)

In a similar way one finds that all higher moments of k̂ are not changed and the effect of the
‘impact’ perturbation is to lead to a shift of the wave packet without changing its shape in the
momentum k distribution. In the Schrödinger picture the wavefunction in the x representation
is changed into

ψ =
∫

a(k) exp

{
exp

[
i

(
k′x − k′2

2M
t

)]}
dk, (49)

where k′ = k +
∫ t

0 F(t ′) dt ′.
There is, however, a broadening of the wave packet in the x representation which is like

that of a free particle. Such broadening in the x representation is given for an initial Gaussian
wave packet by [32]

�x = �x0

√
1 +

h̄2t2

M2�x4
0

, (50)

where �x0 is the width of the wave packet at the initial time t = 0. t is the time in which the
wave packet is broadened, M is the mass of the free particle and we have inserted here the
proper dimensions including h̄. Let us put some numbers for estimating broadening effects in
the detection of gravitational waves by Michelson interferometers [33–35]. Assuming orders
of magnitudes: �x0 = 10−17 cm (note this extremely small value which might be expected
in the detection of gravitational waves on earth), t = 10−5 s, M = 104 gm, h̄ = 10−27 erg s,
then we get �x = �x0

√
1 + 10−4 where the correction is quite negligible. But if we enlarge

the time to t = 10−3 s then the correction becomes significant. In conclusion physical
experiments with single macroscopic objects became so accurate that quantum-mechanical
uncertainty fluctuations should be taken into account.

6. Summary, discussion and conclusion

The theory of harmonic oscillators with time-dependent frequency and effective mass has been
developed in previous studies [1–28]. Such quantum theories have been used for explaining
damping and pumping effects in non-conservative systems. It has been shown also that
such systems under certain conditions will produce squeezing phenomena, i.e., the quantum
fluctuations in one quadrature will be reduced on the expense of increasing the quantum noise
in the other quadrature. The general theory for such effects has been reviewed in the present
paper in sections 2 and 3.

In the present work two models for describing the effects of external perturbations on
harmonic oscillators are analyzed: (a) in section 4 the use of the adiabatic approximation was
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developed where the changes in the harmonic oscillator parameters can be neglected during
the time period of oscillation but their effect is accumulated over many time periods and leads
to squeezing effects. It is shown that the adiabatic approximation can be related to previous
studies of time-dependent harmonic oscillator but the use of the adiabatic approximation
enable us to simplify the analysis and to get the magnitude of the squeezing effects. This
analysis can have implications for mechanical oscillators which are used in traps [30] and for
resonant detectors. While the use of squeezed states of radiation in Michelson interferometers
has been studied extensively [36–38] possible mechanical squeezing phenomena in resonant
detectors [35, 39] were not suggested. (b) In the ‘impulse’ approximation it is assumed that
the oscillators are changing in a time which is short relative to the time period of the harmonic
oscillator. In section (5) an Hamiltonian describing impulse driving forces is described which
does not lead to any squeezing but broadening effects for the mechanical wave packets might
be important, under very special conditions. This model can be related to the detection of
gravitational waves in Michelson interferometers.

I hope that the general treatments of mechanical oscillators with perturbations under the
adiabatic or impact approximation would be of interest, especially for mechanical oscillators
in traps and for resonant detectors.
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